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SUMMARY

A theory for the dynamics of sparse associative memory has been applied to the CA3 pyramidal
recurrent network in the hippocampus. The CA3 region is modelled as a network of pyramidal neurons
randomly connected through their recurrent collaterals. Both the elliptical spread of the axonal systems
and the exponential decrease in connectivity with distance are taken into account in estimating the
connection probabilities. Pyramidal neurons also receive connections from inhibitory interneurons which
occur in large numbers throughout the network; these in turn receive inputs from other inhibitory
interneurons and from pyramidal neurons. These inhibitory neurons are modelled as rapidly acting
linear devices which produce outputs proportional to their inputs; they perform an important regulatory
function in the setting of the membrane potentials of the pyramidal neurons. The probability of a neuron
firing in a stored memory, which determines the average number of neurons active when a memory is
recalled, can be set at will. Memories are stored at the recurrent collateral synapses using a two-valued
Hebbian. Allowance is made in the theory both for the spatial correlations between the learned strengths
of the recurrent collateral synapses and temporal correlations between the state of the network and these
synaptic strengths. The recall of a memory begins with the firing of a set of CA3 pyramidal neurons that
overlap with the memory to be recalled as well as the firing of a set of pyramidal neurons not in the
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Dynamics of the CA3 hippocampal network

memory to be recalled; the firing of both sets of neurons is probably induced by synapses formed on CA3
neurons by perforant pathway axons. The firing of different sets of pyramidal neurons then evolves by

discrete synchronous steps.

The CA3 recurrent network is shown to retrieve memories under specific conditions of the setting
of the membrane potential of the pyramidal neurons by inhibitory interneurons. The adjustable
parameters in the theory have been assigned values in accord with the known physiology of the CA3
region. Certain levels of overlap between the input and the memory to be retrieved must also be satisfied
for almost complete retrieval. The number of memories which can be stored and retrieved without
degradation is primarily a function of the number of active neurons when a memory is recalled and the
degree of connectivity in the network. The inhomogeneity in the connectivity of the pyramidal cells
improves both capacity and overlap of the final state with the memory. The probabilistic secretion of
quanta at the recurrent collateral synapses improves the recall mechanism when there is only partial
overlap in the input with the memory to be retrieved and the input contains incorrect elements, at the

expense of a slight deterioration in the fidelity of recall.

1. INTRODUCTION

The pyramidal neurons of the CAS3 region of the
hippocampus receive excitatory synaptic connections
from a variety of sources. These include the mossy
axons of granule cells and the perforant pathway
axons of entorhinal neurons (Yeckel & Berger 1990).
However, the greatest sources of excitatory synaptic
connections on CA3 pyramidal neurons comes from
the recurrent collaterals within the CA3 pyramidal
system itself (Amaral ef al. 1990). Marr (1971) was the
first to suggest that such a recurrent network could act
as an autoassociative memory, if the efficacy of the
excitatory synapses were modifiable and if the mem-
brane potentials of the CA3 pyramidal neurons were
set by inhibitory interneurons that measure the total
activity of the network (for a detailed description of
Marr’s ideas, see McNaughton & Morris (1987),
McNaughton & Nadel (1990) and Willshaw & Buck-
ingham (1990)). The storage of memories in this
system is then possible by modification of the recur-
rent excitatory collateral synapses. Subsequent presen-
tation of part of a stored memory pattern then allows
for recall of the whole pattern. Marr (1971) pointed
out that the recall process could occur in either one
step or in a series of steps within the recurrent system.
In the latter case, pyramidal neurons excited by the
presentation of part of the stored memory cause other
pyramidal neurons to fire or to be silent until a steady
firing pattern of pyramidal neurons is reached. The
one step process can be called simple recall (Gardner-
Medwin 1976) whereas the multiple step process has
been named the collateral effect (Marr 1971) or
progressive recall (Gardner-Medwin 1976). It has
been argued that the strong granule cell synaptic
input to the CA3 pyramidal recurrent system provides
the pattern of pyramidal neuron firing during a
learning period; this occurs after the granule cells have
already transformed their input from the entorhinal
cortex by, for example, reducing the overlap between
patterns to be presented to the CA3 pyramidal neuron
system (Rolls 1989; Treves & Rolls 1990; Gibson et al.
1991). The direct perforant pathway input to the CA3
pyramidal neurons may then subserve the role of
initiating the retrieval process (Treves & Rolls 1992).

Plul. Trans. R. Soc. Lond. B (1994)

The analysis of autoassociative memory systems has
proceeded along several different paths. One of these,
based on analogies with statistical mechanical systems
(Little 1974; Hopfield 1982) involves a network in
which all the excitatory neurons receive connections
from each other, there is a high level of activity in the
system, and the thresholds for firing of the neurons are
set in artificial ways (for a description, see Amit 1989).
A related approach is the method of statistical neuro-
dynamics (Amari & Maginu 1988; Amari 1989).
Another approach is to try to analyse more biologi-
cally realistic networks, similar to that in the CA3
region of the hippocampus (Treves & Rolls 1991), by
considering a progressive recall process in a system of
randomly connected pyramidal neurons in which
there is a constant level of activity in the stored
patterns. In this case the membrane potential of the
pyramidal neurons is regulated by inhibitory inter-
neurons (Gardner-Medwin 1976, 1989). In the pre-
sent work, a specific mechanism is given for this
regulation. It involves assuming that the inhibitory
interneurons process signals more rapidly than the
pyramidal neurons; an input applied at one instant of
time to the CA3 region thus provides both an
excitatory and an inhibitory input to the pyramidal
neurons; it is the balancing of these that gives stability
to the system and allows the orderly retrieval of
memories under the progressive recall process. The
biological evidence for such a different operation of
the excitatory and inhibitory neurons in CA3 is given
in §4a. The mathematical consequence is that the
inhibitory interneurons act as linear devices, their
output being proportional to their summed input.
This linearity allows a theory developed for a network
involving a single linear inhibitory neuron (Gibson &
Robinson 1992) to be adapted in a straightforward
way to the present case of many inhibitory neurons.

A shortcoming of the early theories (Marr 1971;
Gardner-Medwin 1976) is that a number of correla-
tions are neglected, thus making the region of applica-
bility uncertain. These correlations are of two types.
First, correlations occur between the learned synaptic
connection strengths even though they have been
formed from memories whose elements are random

and independent. Second, correlations develop
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between the state of the CA3 pyramidal system and
the learned synaptic connection strengths because,
after the first recall step, the state becomes dependent
on these connections through the updating procedure;
subsequent recall steps then depend on both the
current state and the connection strengths. A theory
that takes these correlations into account has recently
been developed (Gibson & Robinson 1992) and in this
work it is applied to the CA3 pyramidal neuron
recurrent collateral system, so as to extend the work of
Marr (1971) and Gardner-Medwin (1976), see also
Willshaw & Buckingham (1990). Although for certain
networks the correlations can severely alter the recall
behaviour (for examples of this, see Gibson & Robin-
son 1992), it is found that for the parameter choices
appropriate for the CA3 region their effect is generally
small, the exception being some parameter regions
lying on the border between recall and non-recall. All
calculations in this paper have been done using the
full theory, thus avoiding the need to continually
check that the simpler theories are adequate. The
theory has been used to find the capacity of the CA3
system and to investigate recall as a function of the
properties of the inhibitory interneurons and as a
function of the input initiating the recall. In the latter
case, it is the overlap of the input with a stored
memory that is the deciding factor.

The stochastic variability of synaptic transmission
has been shown to greatly improve the ability of
granule cell networks, such as those in the hippocam-
pus, to separate overlapping patterns of activity on
their inputs and to maintain a steady low level of
activity for varying levels on the inputs (Gibson et al.
1991). As there is considerable stochastic variation in
quantal transmission in the CA3 pyramidal cell
system (Miles & Wong 1984, 1986), it is of interest to
see if this has a role in memory recall. It is shown
below that the probabilistic secretion of quanta
enhances the ability of the recurrent collateral system
to retrieve memories when the associative input
contains many incorrect elements. This enhancement
is, however, at the expense of a reduction in the total
number of memories that can be stored.

2. NOMENCLATURE

n: the number of excitatory neurons E.

n*: the number of inhibitory neurons I.

N: =n+n*, the total number of neurons.
cij: the probability of an intrinsic connection

from neuron j to neuron i.

mean and mean square connectivities for the

E neurons.

w: the connectivity matrix, whose elements W;
are unity if there is an intrinsic connection
from neuron j to neuron Z, and zero
otherwise.

a: the activity, being the probability that a
randomly chosen neuron in a memory
pattern is active.

m: the number of memories stored in the

network. (Strictly, m+ 1 memories are stored,

as the numbering starts from 0.)

S
AnY

Phil. Trans. R. Soc. Lond. B (1994)

VAS One of the memory vectors, p=0,1, . . ., m.
It is of dimension n, and its entries are Os
and 1s according to P(Z¢=1)=a.

VAR The memory singled out for retrieval. It has
the first na places 1s followed by the
remaining n(1 —a) places Os.

J: the matrix of learned connections.
X(t): the vector giving the state of the system at
the discrete times ¢=0,1,2, . . .. It is of

dimension N=n+ n*; its first # entries are Os
and ls, and the remaining n* places are real
numbers.

the vector of inputs to the neurons at time ¢.
the vector of postsynaptic membrane
potentials of the neurons at time ¢

un, oy: mean and standard deviation of the change
in membrane potential due to the arrival of
an impulse at a neuron.

parameters governing the strength of the
inhibition from the 7 neurons.

é: expectation.

E(t): expectation of (input-threshold) for ith
excitatory neuron at time ¢£.

o;(t): standard deviation of (input-threshold) for
ith excitatory neuron at time ¢.

ro(¢): overlap at time ¢ of the current state of the £
neurons with the memory Z°,

X the average valid firing rate; nax, is the
expected number of valid firings at time ¢

Y the average spurious firing rate; n(1—a)y, is
the expected number of spurious firings at
time ¢.

zs the average activity in the inhibitory neurons
at time ¢£.

p: expectation of J.

p expectation of J; conditional on another Jj.

Y covariance of Jjs.

Y covariances of J;’s conditional on other Jj’s.

3. THEORY

(a) The network

The network consists of N neurons, of which =n
(numbered 1, ., n) are excitatory (E) and n*
(numbered n+1, . . ., N=n+n*) are inhibitory (I)
(figure 1).

The connections between these neurons are speci-
fied by an N x N connectivity matrix W, where W;=1
if neuron j sends a collateral to neuron ¢ and W;=0
otherwise. It is assumed that W;=0 (that is, neurons
do not connect directly to themselves) and further
that the W are independent random variables with
P(Wij=1)=c¢;. The values of the ¢; will depend on the
types of neurons being connected and on their relative
spatial location; this is treated in detail below. The
connectivity matrix is thus divided into four blocks,
with each block representing one of the four types of
connections that can occur:

W E>E|I>E .
T\E-I|I-T ) )
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Figure 1. The basic CA3 network, consisting of #» pyramidal
neurons (open circles) and n* inhibitory interneurons (filled
circles). The pyramidal neurons make random connections
with each other through their recurrent collaterals, the
mean probability of any one connection existing being ¢y
Before learning, these connections are ineffective; after
learning, a subset of them becomes effective and in the final
state of the network there are excitatory synaptic connec-
tions whose strengths are taken to be unity (open triangles)
and others whose strengths have remained at zero (open
circles). The inhibitory interneurons receive random con-
nections from many pyramidal neurons and also from other
inhibitory neurons, the mean probabilities of these connec-
tions existing being ¢z and ¢y respectively. The inhibitory
neurons in turn project to pyramidal neurons with a mean
connection probability of ¢z. No learning occurs at any
synapses involving inhibitory interncurons, so such synaptic
strengths are taken as fixed. The initial state of the system is
set by a firing pattern coming onto the pyramidal neurons
from either the mossy fibres or the direct perforant pathway
to stratum moleculare, and this is shown by the lines
entering from the left. Once the initial state has been set, the
external source is removed. The CA3 recurrent network
then updates its internal state cyclically and synchronously.

The synaptic strengths are contained in another N x N
matrix J, and again this is divided into the same four
blocks. For connections involving I neurons these
strengths are taken to be uniform: thus for three of the
blocks J; takes the constant values J;z, — Jg; and
— Ju respectively, where (—)J 45 denotes the connec-
tion strength from a neuron of type B to one of type 4.
However, the values taken in the £— E block are non-
uniform, and are related to the patterns that the
system has memorized.

Phil. Trans. R. Soc. Lond. B (1994)
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These memory patterns occur on the E neurons
only. They are denoted by {Z?: p = 0,1, . . ., m} where
Z’ is a vector of length n, whose ith element is 0 or 1
according to whether the ¢th neuron is inactive or
active respectively, and the elements are randomly
and independently chosen with P(Z! = 1) =a, i =1,

., ny p=0, ..., m. During a learning phase, these
m + 1 patterns are applied from an external source, to
the £ neurons in the network. This learning phase
gives a Hebbian modification of the strength, J;, of a
synaptic connection from neuron j to neuron ¢, such
that J; = J; if for any of the m + 1 patterns that ith
and jth neurons are simultaneously active; otherwise
J;=0. Thus for ¢, = 1,2, . . ., n,

J; =
{ Jep i Z1ZM =1
0  otherwise.

forany p=0,1,..., m,
(2)

This is the so-called ‘clipped” Hebbian, introduced by
Willshaw et al. (1966) (see also Palm 1980, 1988; Faris
& Maier 1988; Amit 1989). The total connection
strengths between the neurons are then contained in
the matrix with elements J;W;;. Note that this matrix
will not in general be symmetric, as although J is
symmetric, W is not.

Of central concern is the recall of a stored pattern,
starting from some initial state of the network. Because
the patterns are random, without loss of generality
this target pattern can be Z° and further, as the
ordering of the neurons is also random, the numbering
of the E neurons can be arranged so that

{l for ¢=1,..., na,

70 _
‘ 0 for i=na+1,...n

(3)
That is, Z° is a vector consisting of na ones followed by
n — na zeros:

Z°= (1,1,...,1,00,...,0)

(4)

na n(l —a)

The network starts in a particular state at time
t = 0, and then updates synchronously at the discrete
times { = 1,2, . . .. The state X(¢) of the system at time
{ is a vector of length N which includes the states of
both the £ and [ neurons (in contrast to the memory
vectors Z” which contain the state of the £ neurons
only). The first z entries are ones and zeros, according
to whether the corresponding £ neuron fires or not at
time-step .. These E neurons fire if their summed
input, which includes excitatory and inhibitory contri-
butions, exceeds their threshold. The I neurons also
sum their input at each discrete time-step, but their
behaviour differs from that of the £ neurons in two
fundamental ways. First, their output is proportional
to their summed input. This follows from the assump-
tion that an / neuron responds to an excitatory input
by producing a relatively large number of spikes
during the interval before the next discrete time step,
the number of such spikes being proportional to the
strength of the input. To a first approximation, each
spike produces the same decrease in membrane poten-
tial at the soma of a neuron to which the / neuron is
connected, which implies that the effective output of
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an [ neuron can be approximated by a continuous
linear function of its total input. The result is that the
remaining #* entries in X (¢), rather than being 0 or 1,
are real numbers proportional to the inputs to the /
neurons. Second, the / neurons act more quickly than
the £ neurons in the sense that a signal arriving
simultaneously at the inputs to an E and an I neuron
is processed so rapidly by the I neuron that its output
is also summed by the E neuron (see §4a). In the
framework of a synchronous network, this difference is
accounted for by making the / neurons act instanta-
neously, whereas the E neurons respond after one
time-step.

(b) Time evolution of the network
The total input to the ¢th neuron at time ¢ is nf(¢),
where

hit) = i=12, ..., N (5)

1
nio
Because each term in the above sum is either 0 or 1
this assumes that each impulse received by the neuron
provides the same change in postsynaptic potential or,
equivalently, each impulse releases the same number
of quanta of transmitter. Note that as the connections
from inhibitory neurons will involve negative J;s, #(f)
can take positive or negative values. From the discus-
sion in the previous section, the £ neurons update
their state according to

19 hz(l) > %
0, otherwise,

X,(l+1)z{ i=1,...,n (6)
where g, is the threshold of an E neuron, taken to be
the same for all of them. On the other hand, the /
neurons update according to

X(t) = kh(t), i=n+1,...,N, (7)

where % is a positive constant. The initial input
pattern X(0) is taken to be a random distortion of the
target pattern Z°. Specifically, X(0) is defined by

X, 1=1,..., na,

PO =1) = | ®)

Yo, t=na+1,...n
where x5 and y, are parameters whose values are to be
specified (for the particular case xy =1, yo = 0 the
input X(0) is exactly the target memory Z°); the
remaining n* places in X(0) are then determined by
equation (7). Thus the total input vector has the form

X(0) = (1,0,0,1,0, . ..,0,1,1,0,1,0,0, . . .,0,kh, ,1(0), . .

(c) Average behaviour of the network

Although the time evolution of any given network is
deterministic, nevertheless it will be different for each
particular realization of the network, as the connecti-
vities are determined probabilistically. For a given set
of parameters n,m, . . ., it is necessary to consider an
ensemble of networks with different detailed structures
compatible with these parameter values. Thus the
state of the network X (¢) at a given time ¢ is a random
variable, and the average behaviour of the network is
found by calculating its expectation.

This calculation is straightforward for the I neurons
since here there is no learning and hence correlations
between connection strengths are negligible. Define

x, = EX(1), i=1,...,na
¥y =EX(1), t=na+1,...,n (10)
z, = EX(¢), i=n+1,... N,

where & denotes expectation. These are the average
activity levels for the £ and [ neurons: the division of
&X(1) for the £ neurons into x, and y, corresponds to a
division into ‘valid’ and ‘spurious’ firings for the recall
of the target pattern Z°% for perfect recall, x, = 1 and
y, = 0. Then (see Appendix 1)

z = g (ax, + (1 — a)y), (11)

where g;' = K¢z J g, ¢ = z czln, (2> n)
J=1

being the average connectivity of £ to [/ neurons.
Equation (11) shows that the average firing activity of
the inhibitory neurons is directly proportional to the
total activity of the excitatory neurons.

Now consider the £ neurons. These receive input
from both E and I neurons, and from equation (6)
their expected firing rate at the ¢ + 1 step is
EX(t+ 1) = Ph(t) > g), i=1,...,mn (12)

which can be rewritten as

EX(t+1) = P<}li(t) — Sh(t) g — ghi“)), (13)

Jvar () Jvar h{2)

where var #;(t) is the variance of #,(¢). (This variance is
in fact the expectation of the conditional variance of
hi(t), given X(¢), as is made explicit in equation (37) of
Appendix 1). A naive application of the central limit
theorem then gives

- Khy(0)), (9)

na n(l—a) n*

where the first na positions contain an average of nax,
ones and the next n(l*— a) positions contain an
average of n(1 — a)yy ones. The time evolution of the
network is now deterministic, the state at the times

{=1,2, ... being given by repeated applications of

equations (6) and (7), using the input calculated from
equation (5).

Phil. Trans. R. Soc. Lond. B (1994)

hi(l) — 2o
EX(L+ 1) = m(?v(;)r—hi(f)} (14)

where @( +) is the normal distribution function. The
above is basically correct for the £— 17 and /> E
contributions, but there are subtleties concerning the
E — FE interactions, arising because the associated J;s
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are constructed from the memories (see equation (2))
and hence are not independent random variables.
This has two consequences. First, the J;s themselves
are correlated and this gives rise to additional terms in
var#,(¢) involving the covariances of these J;s. Second,
the J;s become correlated with the state X(¢) during
the recall process, and this must be taken into account
in evaluating both expectations and variances. The
detailed treatment of these correlations is given in
Appendix 1 and the final computational scheme is
summarized in the next section.

(d) Summary of progressive recall equations

The principal quantities of interest are x, and y,;
these are the average firing levels, at time-step ¢, for
correct and spurious cells respectively. (Recall that
‘correct’” and ‘spurious’ are defined in relation to the
target memory Z°, given by equation (3), so that x, is
the average proportion of ones in the first na places
and y, is the average number of ones in the next
n(1l — a) places; for exact recall of Z° x,—> 1 and y, > 0
as t— 00.) The quantities x; and y; which appear in
the equations below are conditional expectations of
the state X(¢), given particular values of the connec-
tion strengths, and do not have a simple observational
meaning.

The updating process is given by a set of four
coupled difference equations:

X1 = D(E(1)]04(1)), (15)
Y1 = PE(1)]0,(1)), (16)
X 1= P(E(1)[o7(1)), (17)
Yoo = OEL(t)]0,(2)). (18)

All the quantities on the right-hand sides can be
expressed in terms of x,, y,, x7, yj; for example,

E\(t) = lax, + (1 — a)py))

= &ilax, + (1 — a)y) — g, (19)
E,(1) = 2p(ax, + (1 — a)y))

= &@lax, + (1 —a)y) — g, (20)

i=1,...,n (21)

p=1—(1—a*™and Juhas been set equal to 1. g; is
a parameter governing the strength of the inhibition
provided by the / neurons. It is given explicitly by

& = (n*In)cg Jpr gt (22)

where ¢g; is the average connectivity from [ to E
neurons and gy is defined following equation (11). The
remaining quantities required in equations (15) to
(18) are given in Appendix 1.

The above equations are almost the same as those
given in Gibson & Robinson (1992, § 5.1), the princi-
pal difference being the incorporation of non-homo-
geneous connections between the £ neurons. The
extension to many / neurons (as opposed to one) has
not caused a significant change, since they act as

Phil. Trans. R. Soc. Lond. B (1994)
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linear devices and the assumption that each / neuron
receives inputs from many £ neurons means that the
variance in their outputs can be neglected. (This
variance is included in the O(1/n) term in (40).)

(e) Behaviour of the network with probabilistic
secretion of quanta

From equation (5) the presynaptic input to neuron
¢ at time ¢ is nf;(!), where

M=

hi(l) = CiX(1), i=12,...N, (23)

1

1

nj
where C; = W, J;; is the total connection strength from
neuron j to neuron ¢. This assumes that each action
potential received by neuron ¢ has the same effect. To
generalize this, let N; be the change in membrane
potential due to an impulse arriving from neuron j.
This will be proportional to the random number of
quanta of transmitter released by the action potential.
It follows that the postsynaptic membrane potential is

hi*(1) =

S| =

Y G XN, i=12,..,N. (24)
j=1

The N; will be taken to be independent random
variables with mean u, and variance ¢%. To incorpor-
ate this synaptic noise into the formalism, it is
necessary to calculate the expectation and variance of
h"(t) and the details are given in Appendix 1. It turns
out that all the required quantities have already been
calculated, so the inclusion of synaptic noise involves
making a choice for uy and oy.

4. THE CA3 PYRAMIDAL NEURON
RECURRENT NETWORK

(a) Neuron types and their connections in CA3

The CA3 region of the hippocampus may be con-
sidered as a two-dimensional rectangular sheet, about
10000 pm long and 2700 um wide (Braitenberg &
Schuz, 1983; Finch et al. 1983). In one-month- to one-
year-old Sprague-Dawley rats, the CA3 region con-
tains 330000 pyramidal neurons (Boss et al. 1987).
These neurons have very long dendritic trees, of
cumulative length about 16000 pm but they are
compact, spreading out over only about 200 pm from
a 20 pm diameter soma (Finch et al. 1983); as spines
occur on these dendrites at intervals of a little over
1 um along their length, the CA3 pyramidal neurons
possess about 12000 synapses, over half of which
mediate synaptic connections between pyramidal
neurons (Amaral et al. 1990). These synapses arise
from a very extensive pyramidal-cell axon collateral
system, which spreads for about a quarter to a half the
longitudinal extent of the hippocampus along the
septotemporal axis (up to 4 mm: Ishizuka e/ al. 1986;
Tamamaki & Nojyo 1991) and along about half of the
transverse axis (about 1 mm; Finch e/ al. 1983).

The probability that two pyramidal cells are con-
nected decays exponentially with the longitudinal
distance between them, presumably because of a
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decrease in the number of synapses. The rate of this
decay has been estimated at 600 pm~' (Miles et al.
1988; Traub & Miles 1991).

There are about 33000 inhibitory interneurons
distributed throughout the CA3 region of the hippo-
campus, which is about 109, of the pyramidal cell
number (Misgeld & Frotscher 1986). There are two
principal classes of these. One set are the vertically
oriented basket cell interneurons in the stratum
pyramidale that synapse on the soma of the pyramidal
cells as well as on other inhibitory interneurons; the
others are horizontally oriented stratum oriens-alveus
interneurons that also synapse on both pyramidal
cells and other inhibitory interneurons (Lacaille &
Schwartzkroin 1988; Schlander & Frotscher 1986).
Both types of inhibitory interneurons receive an
excitatory input onto their dendrites from the pyrami-
dal cells (Lacaille & Schwartzkroin 1988).

Excitatory synaptic transmission from CA3 pyrami-
dal neurons to inhibitory interneurons occurs much
more quickly than does that between CA3 pyramidal
neurons (2 to 3 ms compared with 10 to 15 ms; Miles
1990; Miles & Wong 1987). The result is that an
action potential in a pyramidal neuron can initiate
disynaptic inhibitory postsynaptic potentials in other
pyramidal neurons with a latency of between 3 and
5ms (Miles 1990); this may be compared with the
longer latency of 10 to 15 ms for the monosynaptic
connections between pyramidal neurons. This pro-
vides the physiological basis for the theory (§ 3a) that
an action potential arriving simultaneously at an
excitatory terminal on a pyramidal neuron and on an
inhibitory interneuron is processed so rapidly by the
interneuron that its output can be summed by the
pyramidal neuron together with its excitatory input.

(b) Evaluation of connection parameters in the
theory

This section is concerned with obtaining numerical
values for the quantities ¢ = ¢z and ¢? = cip, as defined
by equations (21) and (43). These are for connections
from E to E neurons. The corresponding quantities
are also defined for connections involving / neurons
and similar estimates could be made for them, but
in the current model they are combined with other
factors and their individual values are not required.

By definition, ¢; is the probability that an axon of
neuron j connects to a dendrite of neuron z. It is
assumed that ¢; falls off exponentially with distance
(§ 4a) and can be written

)s (25)

where r; and 7, are the positions of the neurons and €
is a constant satisfying 0 < C < 1. This exponential
dependence on distance will only be an approxima-
tion to the true situation; a more precise model would
need detailed information on such factors as axonal
branching and density of terminals as a function of
distance from the soma. The mean connectivity ¢, as
given by equation (21), is a sum over these exponen-
tials.

The E neurons are the pyramidal cells in the CA3

c; = Cexp( — /)|r,-w 7;

Phil. Trans. R. Soc. Lond. B (1994)

region of the hippocampus. These lie in a curved sheet
that is only two or three cells thick, and thus is
essentially a two-dimensional structure. It is therefore
appropriate to approximate the sum in equation (21)
by a two-dimensional integral (Appendix 2) over the
effective area of an axonal tree, where this effective
area takes into account the finite extent of the
dendritic tree. This area is approximately elliptical
(Ishizuka et al. 1986; Tamamaki & Nojyo 1991; see
also the discussion in § 4a above) and assuming that
the connection probability ¢; is constant on ellipses of
constant eccentricity centred on 7;, then (Appendix 2)

g 1
0= C* —— s (1 = (1 + AR)e™ ™) RiR,,

r (/)1R1)2 (26)

where o is the density (number per unit area) of the £
cells, R, R, are the lengths of the semimajor and
semiminor axes respectively of the effective axonal
area and A; is the value of A along the major axis.
(Note that, whereas for a circular area A would be
isotropic, in the elliptical case it must be a function of
distance if one makes the reasonable assumption that
the connection probability falls smoothly to the same
value at the edge of the axonal tree. This concept is
made precise in Appendix 2.) A similar calculation
gives

6‘2:

2no 1

250 (1~ (1 + 24R))e2R) RR,.

PRNCYNRE 27)

The numerical values for the constants appearing in
equations (26) and (27) can be obtained by a
consideration of the values given in §4a. The CA3
region is a two-dimensional rectangular lamina of
dimension 2700 um by 10000 pm and so o/n =
(2700 x 10000) "' =3.70 x 1078 um 2 The axon
collateral system of a CA3 pyramidal neuron has a
longitudinal spread of about 4000 pm and a transverse
spread of about 1000 pm. The dendritic spread is
about 200 pum so it is reasonable to take R, = 2100 pm
and Ry = 600 um. The value of A; must accord with
the requirement that exp( — A7) be reasonably small
when r = Ry, otherwise one would go abruptly from a
region of high connectivity to one of zero connectivity.
The choise 4 = 1/1200 pum ! gives exp( — 4Ry) =
0.17 and also leads to Ay = 1/343 um ~! where J; is the
value of A along the minor axis; this does not conflict
with the value A = 1/600 pm ! quoted in § 4a above,
assuming that it is an average value. Inserting the
above values into equation (26) gives ¢ = C x 0.050,
and it remains to choose a value for C. In one case, the
value of ¢ estimated by Smith et al. (1988) was 0.05
(range 0.01 to 0.1; Traub & Miles 1991). If one makes
the choice C = 1, then from equation (26) ¢ = 0.050
and from equation (27) ¢? = 0.021. This choice of C is
not unreasonable, as it means that two £ neurons very
close together are almost certainly connected. Thus
the final choice for the connectivity parameters is
¢ =0.05, ¢ = 0.021.

It is worth remarking that the above results do not
depend crucially on the assumption of an exponential
fall-off in connection probability, as in equation (25).
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Similar values of ¢ and ¢® can be obtained using other
expressions, for example (1 + /llrl- — rj|) ~!. The expo-
nential form is chosen for convenience, and also
because it is the standard one that experimentalists use
to fit their results.

The above procedure involves estimates of para-
meters that are not precisely experimentally deter-
mined, but at least two things of significance emerge.
First, using values for these parameters that certainly
lie within acceptable limits, a value for Z has been
obtained that is in agreement with experimental
estimates. Second, a relationship has been obtained
between ¢ and ¢, and this is important in the
calculation of the variances in the progressive recall
equations. Note that if no spatial dependence has been
assumed in the connectivity, then one would have
¢? =% The effect of the spatial dependence is to
reduce the variances o,({) and 0,({) (scc equations
(41) and (42)); this leads to both an increase in the
storage capacity of the network and an increase in the
overlap of the final state and the memory being
recalled.

(¢) Choice of remaining parameters in the theory

The parameters determined so far are the total
number of CA3 pyramidal neurons n = 330000 (§ 4a)
and the connection parameters for these neurons
¢ =0.05, ¢ = 0.021 (§4b). The remaining parameters
are a, g, g1, M, iy, Oy, % and yo.

The activity a is not precisely determined experi-
mentally. A large a allows the network to store only a
small number of memories; as a decreases the number
of memories increases (although the information con-
tent of each memory decreases; Palm 1988; Amari
1989). a cannot become too small, otherwise too few
neurons are active in a memory, and statistical
fluctuations make the recall process unreliable. Marr
(1971) chose to have an average of 200 neurons active
in a total neuron population of n = 100000 when a
memory is recalled, giving the value a = 0.002. In the
present case 7 is larger so the choice ¢ = 0.001 is made,
giving an average of 330 active neurons when a
memory is recalled exactly. Limited variation of a
about this value gives similar results; however a much
larger a (for example, 0.002) considerably reduces the
storage capacity and a much smaller a (for example,
0.0005) does not give recall from a partial input, so
a = 0.001 is a reasonable compromise.

The threshold on a pyramidal neuron, g, will be
taken to be a positive constant, the same for all cells.
Experimental values cannot be used as the scaling in
the equations is of necessity arbitrary. Because the
neuron’s membrane potential is set by a sum of
excitatory and inhibitory inputs, the theory will work
with g, set to zero; however, this choice does allow the
network to exhibit oxcillatory behaviour in certain
parameter regions that are on the border between
retrieval and non-retrieval of a memory. Thus a non-
zero g is desirable both physiologically and mathema-
tically. An estimate of the size of g, can be obtained
from equation (19) by considering the case where
recall occurs with the spurious firings kept very low

Phil. Trans. R. Soc. Lond. B (1994)
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(y, ~ 0). Recall implies that £;(¢) must be greater than
zero, leading to 0.00003x, — go > 0, where the typical
value g; = 0.02 has been used. Thus recall from a
starting value of, for example, x = 0.25 requires
g0 < 7.5 % 10-%. In the following calculations, g, =
7 x 1075 this value damps out most of the undesir-
able oscillations without causing much degradation in
recall performance.

The strength of the inhibitory input to a pyramidal
neuron is determined by g;. It is given explicitly by
equation (22), but again this involves quantities whose
values are not determined experimentally so this
cannot be used to evaluate g;. The procedure adopted
below (§5b6) is to evaluate the progressive recall
equations for a wide range of values of gy; it is usually
found that for part of this range recall occurs, and a
suitable value of g; can then be chosen for further
calculations. The value of m, the number of stored
memories, is also unknown experimentally, and a
similar procedure of investigating a range of possible
values can be used (§ 5d).

The stochastic nature of quantal release at synapses
is governed by the random variables N,, which have
mean wy and standard deviation oy. Without loss of
generality, uy can be taken to be unity; the noise due
to the stochastic equal release is then determined
entirely by oy, and the effect of taking various values
of this parameter is investigated (§ 6).

The final parameters, xy and y,, give the number of
valid and spurious firing in the input signal to the
CA3 network. Again, the theory is cvaluated for a
range of reasonable values of both these parameters
(§50).

Broadly speaking, the parameters can be divided
into three categories: those in the first (n,5,c%) have
reasonably well determined values; those in the second
(a,g0) are less well determined, but reasonable esti-

mates can be made and the final results are qualita-
tively similar for a range of values; those in the third
(g1,m,04,%0,Yo) are largely unknown from the experi-
mental point of view, but the behaviour of the model
network has been explored for a comprehensive range
of values for each parameter.

5. RECALL IN THE CA3 RECURRENT
NETWORK

(@) The dynamics of progressive recall

The progressive recall process begins with a certain
input onto the CA3 pyramidal neurons, this input
being possibly derived from the monosynaptic connec-
tions formed by the perforant pathway on the pyrami-
dal neurons in stratum moleculare. This input is
represented by a vector X(0) structured according to
equation (9), with the first na positions showing the
firings contained in the memory Z° (the valid firings)
and the next n(l — a) positions showing the firings
outside this memory (the spurious firings). The
remaining #* positions are the inputs to the inhibitory
neurons and these are automatically set according to
the prescription given by equation (7). At the first step
of the recall process, this input is converted into a set
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Figure 2. Progressive recall in the CA3 pyramidal neuron recurrent network. (a) Step t=0; (b) step t=1; (¢) step
{=2; (d) step t=_38. The parameters used are: number of pyramidal neurons n= 330 000; connectivity parameters for
the pyramidal neurons ¢=0.05, = 0.021; probability that a pyramidal neuron is active in a memory a=0.001; total
number of memories stored m=200000; threshold parameter for the pyramidal neurons go=7 x 1075 strength
parameter for the output of the inhibitory interneurons g;=0.024; initial valid firing rate xo=0.5; initial spurious
firing rate yo=0.001. (Thus the initial input contains 165 valid firings and 330 spurious ones.) There is no synaptic
noise (gy=0). The curves show the distribution of n(A;(t) — go) for time steps t=0, 1, 2 and 8. 4; (¢) is the total synaptic
input to the ith pyramidal neuron at time ¢, and is a measure of the membrane potential at that time. These inputs
can be divided into two sets: Ax(¢f) ={hi(t), . . ., h()}, the set of inputs for the neurons that fire under memory Z°,
represented by a solid line, and Ay () ={hu1(1), . . ., A4(2)}, the set of inputs for the neurons that are silent under
memory Z°, represented by a broken line. Both curves are normal density functions with means and variances that
are calculated using the progressive recall equations. Because go has been subtracted, the threshold for firing is now
zero. The membrane potentials shown at step ¢=0 («) represent the initial input of 165 valid and 330 spurious
firings, together with the output from the inhibitory interncurons. For recall in a single step one would require the
two distributions to be separated by zero; clearly this has not occurred, and at this stage only a small part of the
memory has been retrieved. The output from the pyramidal neurons is now fed back via the recurrent collaterals,
giving the distributions shown at step /=1 (4). The distribution for the non-memory set &y(¢) (broken line) is still
almost entirely below 0, but the distribution for the memory set Ax(¢) (solid line) has moved to the right, and this will
give more valid firings. This trend continues with subsequent steps, until by the =38 step (d) the two distributions
are almost entirely separated by the threshold at 0, giving 322 valid and two spurious firings. At this stage a steady
state has been reached and no changes occur at subsequent time steps.

., 7,(0)}, of membrane potentials for

175

An example of this is given in figure 2, where the

the pyramidal neurons, according to equation (5).
This set can be divided into two subsets Ax(0) = {#,(0),

> hnn(())} and /Zy(()) = {}lrm-a— 1(0)> M) /ln(o)}7 thus
hx(0) is the set of membrane potentials for those
neurons that fire when the memory Z° is recalled and
hy(0) is the set of membrane potentials for all other
neurons. The memory Z° will be exactly recalled in
one step if all the members of Ax(0) are above the
threshold g, and all the members of Ay(0) are below.
In general, this will not occur: the two sets of
membrane potentials will form two overlapping distri-
butions that are not cleanly separated by go.

Phil. Trans. R. Soc. Lond. B (1994)

distribution of membrane potentials at selected times
in the progressive recall process is shown for a specific
choice of parameters (as detailed in the figure legend).

Let Ax(¢), hy(t) be the sets of membrane potentials
for the ‘memory’ and ‘non-memory’ neurons, respec-
tively, at time { These membrane potentials are
discrete random variables which by the central limit
theorem tend to become normally distributed for =
large. Since in the present case n = 330000 their
histograms would be almost indistinguishable from
smooth normal distribution curves. Thus in figure 2
the curves shown are normal density functions with
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Table 1. Progressive recall in the CA3 pyramidal neuron
recurrent network

(The network parameters are the same as those for
figure 2. The table shows the number of valid and
spurious firings for each of the first eight time steps,
together with the overlap ry(¢) (see equation (28)) of
the current state with the memory Z° The initial
input to the pyramidal neurons contains 165 valid
active neurons and 330 spurious active neurons. At
step t=8 the network contains 322 valid and two
spurious active neurons, and this situation does not
change with further steps. Exact recall of the memory
would require 330 valid and O spurious firings, but
this cannot be achieved under progressive recall with
this number of memories.)

time valid spurious overlap
step firings firings with memory
0 165 330 0.408

1 47 0 0.375

2 57 0 0.415

3 86 1 0.508

4 158 4 0.684

5 261 8 0.876

6 311 4 0.965

7 321 3 0.982

8 322 2 0.984

means and variances calculated using the theory of § 3
and the Appendix, the solid lines being for the set Ax(¢)
and the broken lines for the set Ay(tf). More precisely,
the curves represent n(k(f) — go) and the effect of
subtracting g, is to make zero the threshold for firing.
The initial input onto the pyramidal neurons consists
of 165 valid firings and 330 spurious ones (see table 1).
The membrane potentials shown at the ¢t = 0 step in
figure 2 give 47 valid firings and O spurious firings at
the next step. This reduction in activity has been
caused by the inhibitory interneurons; these are
assumed to act much more rapidly than the pyramidal
neurons (§4a) and so although the initial signal
arrives simultaneously at the pyramidal cells and at
the inhibitory interneurons, the latter process this
signal so rapidly that their inhibitory contribution is
added to the membrane potential of the pyramidal
cells at the ¢ = 0 time step. The recurrent circuit of
collaterals now comes into play: the output from the
pyramidal cells is fed back, with again the inhibitory
interneurons acting rapidly, and the membrane
potentials shown at step ¢ = 1 in figure 2 are obtained.
The set Ay(1) is almost entirely below 0, so there are
almost no spurious firings; the set Ax(1) has a substan-
tial portion above 0, and so the valid firings increase.
This trend continues with subsequent steps, and by
¢t = 8 an equilibrium state has been reached, with 322
valid firings and two spurious ones (table 1). Exact
recall of the memory would be 330 valid and 0O
spurious firings, but this is not achievable by the
progressive recall process in a network storing this
number of memories.

Phil. Trans. R. Soc. Lond. B (1994)
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(b) The dependence of recall on the setting of the
membrane potential by inhibitory interneurons

The setting of the membrane potential of the
pyramidal neurons in CA3 by the inhibitory inter-
neurons can vary from one recall step to another. The
magnitudes of the inhibitory synaptic potentials res-
ponsible for this are linearly related to the activity in
the network, the constant of proportionality being the
parameter g; (see equations (19), (20) and (22)) and
so changes in g; determine the membrane potential for
any particular level of activity. g, cannot be deter-
mined from known experimental data, but some
insight into its significance can be obtained by finding
the final state of the network for a range of values. A
convenient measure of the closeness of the current
state X(¢) to the target memory Z° is provided by the
overlap defined by

2, (Xi(t) = X ())(Z? - Z°
r(t) = ,  (28)

\/ [_21 (X() - £0* 3. (29 - Z‘ﬂ

>

Z°=3 Zn=a.

i=1
This expression shows that 7,(¢) is related to the cosine
of the angle between the vector formed by the first n
places of X (0) (that is, those entries referring to the £
neurons) and the vector Z° It is unity if and only if
there is complete retrieval of Z°. Introducing

it can be written more simply as
nll) = S1(8) — aS (1)
VIS0 = SO Tna(1 = )]

The solid curve in figure 3 shows the final overlap
7o(t = o0 ), in the absence of synaptic noise, for g in
the range 0.015 to 0.035.

There is a ‘window’ of retrieval, outside of which
the overlap with the target memory is negligible. For
small values of g; there is too little inhibition and this
allows the number of spurious firings to build up. The
result is either unstable oscillations, leading to all
neurons going to the dead state, or a stable oscillatory
pattern involving many spurious firings; the overlap
with the memory Z° is thus either zero or very small.
As g increases, there is an abrupt onset of recall (but
with some oscillation) at g = 0.0166 and an even
more abrupt cessation at g; = 0.0245. (These discon-
tinuities correspond to bifurcations that are a conse-
quence of the nonlinear nature of the model: a brief
discussion is given in Gibson & Robinson (1992); a
more extensive discussion of bifurcations in a related
model can be found in Amari (1971).) For values of g,

(29)
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larger than 0.0245 the inhibition is too strong and the
activity in the network quickly dies. The quality of
recall is not uniform in the window. The overlap
7o( 00 ) varies from a low of 0.557 to a high of 0.984,
with g, = 0.024 giving optimum recall. The value of
g1, determined as it is by the number and strengths of
the connections between inhibitory and excitatory
neurons, is presumably set during the evolution of the
network which accompanies development.

(¢) The dependence of recall on initial overlap with
the target memory

The capacity of the CA3 pyramidal neuron recur-
rent network to recall a memory depends on the initial
level of overlap with this memory. This in turn
depends on the number of valid and spurious firings in
the initial state; for an input characterized by para-
meters Xo, Yo, these are naxy and n(l — a)y,, respec-
tively. In the absence of definite information about the
values of xy and yp, recall has been investigated for a
range of possible values.

In figure 4q, recall is investigated as a function of
the inhibition strength parameter g, and of the
number of valid firings nax, in the initial state. The
number of spurious firings in the initial state has been
fixed at 330 (y, = 0.001) and the number of memories
stored is m = 200000. The height of the graph repre-
sents the overlap of the final state with the target
memory Z°. The raised ‘plateau’ thus gives the region
of recall, and the steepness of the walls surrounding it
reflects the abrupt onset of recall, as discussed in the
previous section. Again, recall is possible for a range of
values of g;, with the choice becoming more restricted
as the initial overlap becomes less. In other words, a
good setting of g; will enable memory retrieval from
very incomplete initial information.

Figure 45 shows the corresponding situation when
the number of initial valid firings is fixed at 99
(corresponding to xy = 0.3) and the number of initial
spurious ones is varied. A similar situation holds, and
again an optimum choice of g;, not incompatible with
the optimum choice based on figure 4a, will enable
retrieval from very incomplete input information.

In figure 5 the recall region is shown as a function of
both valid and spurious initial inputs. A specific
choice g; = 0.02 has been made, and also the number
of memories has been reduced to 100000 to show
more clearly the effect of synaptic noise (to be
discussed in the following section). In the noiseless
case, the solid line gives the division between the
regions of memory retrieval (above) and non-retrieval
(below). The quality of retrieval is uniform over the
entire upper region, being an overlap of 0.996 (328
valid, O spurious); below the line the overlap is 0.0 (no
neurons firing). This uniformity exists because, for a
given set of network parameters, the system evolves to
a fixed point whose properties are independent of the
initial state of the system: the initial state only
determines which fixed point is the final state. The
upper region can be thought of as representing the
basin of attraction for the memory Z% provided the
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Figure 3. Recall as a function of the inhibition strength
parameter g; for various amounts of synaptic noise. The
values of n, ¢, &%, a, m and g are the same as for figure 2; the
initial state parameters are xo=0.5, yo=0.001 which means
that the initial state contains 165 valid and 330 spurious
firings; the parameter g1, which is a proportionality constant
governing the strength of the inhibition provided by the
inhibitory neurons, varies over the range 0.015 to 0.035. The
progressive recall equations (15-18) are iterated until a
stable final state is reached and then the overlap with the
stored memory state Z° is calculated using equation (29).
This overlap is related to the cosine of the angle between the
vector representing the final state of the pyramidal neurons
and the vector representing the memory Z° for exact recall
of this memory it would be equal to 1.0. Results are given
for the case of no synaptic noise (6y=0.0) and for the cascs
where the noise has standard deviations oy=0.4 and 0.6. In
cach case there is a recall ‘window’, outside of which the
overlap is essentially zero. Inside a window the overlap can
vary from a low of about 0.6 to a high of 0.9 or more; for
optimal recall in a given network the valuc of g; which
maximizes this overlap should be chosen. The main effect of
increasing synaptic noise is to shift the window to the right,
and diminish both its width and height. In the zero noise
case there is some oscillatory behaviour in a small region on
the edge of the recall window (g1~0.017). This disappears
under a moderate amount of synaptic noise (oy=0.2 is
enough to remove it completely).

initial state lies in this basin, then the memory is
retrieved with the same final overlap.

Figures 3-5 have dealt only with the final state of
the network. However, the progressive recall equa-
tions give all the intermediate steps in the recall
process and an example of this is shown in figure 6,
where recall is initiated from states with different
overlaps with the memory Z° These overlaps are
7(0) = 0.182, 0.262, 0.337, 0.474 and were obtained
by fixing the number of initial spurious firings at 330
and varying the number of initial valid firings. For the
noiseless case (solid lines), retrieval fails for the two
smaller initial overlaps, and succeeds for the two
larger ones. There is a certain ‘threshold’ value of 7(0)
(about 0.325 in the present case) at which retrieval
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Figure 4. (a) Recall as a function of the initial state xo and the inhibition strength paramecter g;. The valucs of z, ¢, 2,
a, m and go are the same as for figure 2; yo=0.001, which means that the input contains 330 spurious firings; xo ranges
from 0.273 to 1.0, which means that the number of valid firings in the input ranges from 90 to 330; g; varies over the
range 0.015 to 0.035. The height of the graph is the overlap of the final state, obtained by iterating the progressive
recall equations, with the target memory Z° The raised platcau represents the region of recall; the ‘walls’
surrounding it reflect the abrupt nature of the onset of memory recall. (Note that the solid curve in figure 3 is simply
the cross-section of (a) for the valid initial firings equal to 165.) (4) This shows a similar situation to (a): the
difference is that the input signal now has xo=0.30 and thus always contains 99 valid firings; yo varies from 0.001
to 0, so the input contains from 330 down to O spurious firings.
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Figure 5. Recall as a function of the initial state in the
presence of various amounts of synaptic noise. The values of
n, 7, &, a and gy are the same as for figure 2; the number of
stored memories has been reduced to m=100000 and g, has
been fixed at 0.02. The axes show the number of valid and
the number of spurious firings in the initial state X (0). The
lines give the division between the regions of retrieval and
non-retrieval for each value of the standard deviation of the
noise (oy=0,0.4,0.8,1.0,1.2). In each case, the lower region
represents non-retrieval (zero overlap with the target
memory) and the upper region represents retricval (non-
zero overlap with the target memory: this varies from 0.996
for the noiseless case to 0.875 for the oy=1.2 case). It is seen
that the presence of synaptic noise can significantly increase
the number of initial states that lead to recall; for example,
an initial state with 200 valid and 630 spurious firings will
not recall a memory until the noise standard deviation
exceeds 0.8. However, there is a limit to the amount of noise
that is beneficial: too much noise leads to a much reduced
overlap of the final state with the target memory, and also
the actual retrieval region will start to diminish, as shown by
the ‘kink’ in the oy=1.2 curve.

commences, with the final overlap jumping from
ro(00) =0 to 75(00) =0.996. This threshold value
will depend on the mixture of valid and spurious
firings in the initial state; however, the value of the
final overlap, 75( o0 ), depends only on whether re-
trieval occurs and not on the specific construction of
the initial state.

(d) The maximum number of memories that can
be stored in CA3

Several definitions of capacity are commonly used
in connection with memory storage networks (Amari
& Maginu 1988; Treves & Rolls 1991; Gibson &
Robinson 1992). The first is absolute capacity, and is
measured by the maximum number of memories that
can be stable states of the system. This requires that
the memories are completely stable in the sense that if
the system is started in a memory state it will stay
there precisely. This is too stringent a requirement for
a biological memory; a better quantity is the relative
capacity which is a measure of the maximum number
of memories for which the state of the system will

Phil. Trans. R. Soc. Lond. B (1994)
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Figure 6. The time steps in the progressive recall process,
starting from various initial overlaps with the memory Z°.
The values of n, ¢, &, a and go are the same as for figure 2,
m=100000, g;=0.02 and y=0.001 (thus the number of
initial spurious firings is 330). The steps in the recall process
are shown for four different starting overlaps (shown as X in
the figure), formed by taking x%=0.2, 0.3, 0.4, and 0.6,
corresponding to 66, 99, 132 and 198 valid firings, respec-
tively. The solid lines are for the case of zero synaptic noise,
and the broken lines are for ¢,=1.0. As shown by the
x0=0.3 and xp= 0.4 cases, the presence of synaptic noise can
retrieve a memory that would otherwise be lost; the price to
be paid is a lower final overlap: in the present case, 0.946
compared with the noiseless value of 0.996.

approach and then remain close to a memory during
progressive recall. A necessary condition for this to
occur is that the stored memories be stable and this
can be tested by starting the network in the state
X(0) = Z° and observing whether the overlap remains
close to 1 or goes to 0. Figure 7a shows the results of
performing this test for a range of values of m and g,
the solid curve corresponding to zero synaptic noise
being the relevant one for this section. A precise choice
of g is necessary for optimal storage: the choice
g1 = 0.031 enables a noiseless network to store the
order of 340000 memories as stable fixed points.

Treves & Rolls (1991) measure capacity (o) as the
maximum number of retrievable patterns per synapse;
thus, in our notation, o, is the value of m/nz when m
is maximum. For the above values (m = 340000,
n = 330000, ¢ = 0.05) this is approximately 20, which
is comparable to Treves & Rolls’ value of about 30 for
a = 0.001 (Treves & Rolls 1991, figure 5a). It is to be
noted that their model is different in that it uses a
covariance Hebbian, rather than a clipped one.

The ability of the network to act as a memory
device depends not only on the stability of the stored
memories, but also on the basins of attraction sur-
rounding these memories; if these are too small it will
really only function as a recognition device and will
not act as a retrieval device in the usual sense of
performing pattern completion. Some insight into the
size of these basins can be obtained by starting the
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Figure 7. (a) Memory stability, as a function of the
inhibition strength parameter g; for various levels of synap-
tic noisc. The values of n, 7, %, a and gy are the same as for
figure 2. The initial state is the target memory (parameters
=1, yo=0); the final state, obtained by iterating the
progressive recall equations until no further change occurs,
is cither near this memory, or else has negligible overlap
with it. The calculation is repeated for a range of values of
m and g; and the curves give the maximum number of
memories that can be fixed points for each value of g;. (Thus
the region under each curve corresponds to parameter
values for which memory storage is possible.) The range of
possible values of gi is severely reduced as the network
approaches its maximum capacity. The effect of synaptic
noisc is to reduce the possible number of stable memories:
for zero noise it is about 340000; this reduces to about
300000 for oy=0.4 and to about 210000 for oy=1.0. ()
Memory capacity, as a function of the inhibition strength
parameter g; for various initial states (zero synaptic noise).
The values of n, ¢, ¢%, @ and go are the same as for figure 2.
Results are shown for four different initial states, containing
no spurious firings and 10%,, 20%,, 30%, and 100%, valid
firings, respectively (that is, yo=0,x=0.1,0.2,0.3,1.0). The
retrieval region is very limited in the 109, case, but
improves rapidly for initial inputs containing 209, or more
valid firings.
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network in a state which only partially overlaps a
stored memory. Figure 76 shows the retrieval regions
for four cases where the initial state contains no
spurious firings and 10%,, 20%,, 30%, and 1009, valid
firings, respectively (thus y, = 0 and x, = 0.1,0.2,0.3,
1.0). In the 109, case the capacity is limited to a
maximum of 200000 memories and the choice of g;
is critical. A 209, input considerably improves the
situation and for inputs of 409, or greater there is little
difference to the 1009, case, indicating that by this
stage most initial points lie within the basin of
attraction of the relevant memory.

6. EFFECTS OF PROBABILISTIC SECRETION
OF QUANTA ON RECALL IN THE CA3
RECURRENT NETWORK

Quanta are secreted from boutons stochastically (for a
review, see Redman 1990). The question arises as to
the effects of this phenomenon on recall in a recurrent
network in the hippocampus. The progressive recall
formalism was extended in § 3¢ and Appendix | to
include the effects due to probabilistic secretion of
quanta at synapses in the CA3 region. The final
equations are (48) to (53), involving the new para-
meters py and gy. As explained in § 4¢, there is no loss
of generality in taking uy=1. The value of the
standard deviation, gy, is not known experimentally,
so a representative selection of values will be used
below to illustrate the possible effects.

One cffect of the stochastic fluctuations in quantal
secretion at the recurrent collateral terminals of CA3
pyramidal neurons is to require the g membrane
potential setting parameters to take on higher values if
successful recall of memories is to be obtained (figure
3). The width of the window is also diminished, the
effect being moderate for oy = 0.4 but becoming large
tor oy = 0.6. There 1s also some degradation in the
extent to which the memory can be recalled at any
setting of g;, the amount varying with the value of gy
and the choice of g;. Overall, it can be concluded that
a rcasonable amount of synaptic noise (oy < 0.4, say,
in the present case) does not cause much degradation
in the recall properties of the network.

Although probabilistic secretion of quanta at recur-
rent excitatory synapses leads to a decline in the
amount of memory that can be recalled, this is
compensated for by an increase in the ability of such
recurrent networks to give good recall from a relatively
poor initial overlap with the memory to be recalled.
This is particularly true if the number of memories
stored is well below the maximum capacity of the
network. Figure 5 shows this effect in a network storing
100000 memories, which is well below its maximum
(noiseless) capacity of over 300000 memories. Here,
the addition of quite a large amount of noise (up to
0, = 1.0) causes a significant increase in the ability of
the network to recall memories from partial informa-
tion. This is very noticeable when the input contains a
large number of spurious firings; for example, an input
containing 330 valid firings and more than 825
spurious ones would not lead to recall in a noiseless
system, but with gy = 1.0 up to 1130 spurious input
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Figure 8. (a,b) Retrieval failure in the absence of noise. (a) Step ¢=0; (b) step ¢= 1. The values of n, ¢, ¢ a and g arc
the same as for figure 2, m=100000, g1=0.02, 6y=0, xo=0.8 and 5= 0.0025 (thus the number of initial valid firings
is 264 and number of initial spurious firings is 824. The membrane potentials shown at step (=0 (a) are calculated
from this input together with the output from the inhibitory interneurons, with g subtracted so that the threshold
for firing is at 0. The result is only seven valid and no spurious firings, leading to the membrane potentials shown at
step =1 (b); these are now completely below threshold, and no further firing occurs. (¢-f) Successful retrieval in the
presence of synaptic noise. (¢) Step t=0; (d) step t=1; (e) step t=3; (f) step t=8. The parameters have the same
values as for (a,0) except that now oy=1.0. The effect of the noise has been to increase the variances of the
membrane potentials, and there are now 32 valid (and no spurious) firings at the first step. This is enough to keep
the network alive, and the progressive recall mechanism gradually separates the two distributions, until by the /=8
step the network has settled into a stable pattern of 301 valid and six spurious firings.

firings would still give retrieval. There is, however, a
limit to the amount of noise that is beneficial. In the
present case, the choice g, = 1.2 continues to give an
improvement in cases where the input contains many
valid firings, but leads to a deterioration in cases where
there are a small number of valid firings, as shown by
the ‘kink’ in the upper left hand region.

If the network stores more memories, the beneficial
effect of synaptic noise decreases. For example, if the
number of memories in the network of figure 5 is
increased to 200000 then only noise up to about
oy = 0.4 is uniformly useful; for larger value ‘kinks’

Phil. Trans. R. Soc. Lond. B (1994)

start appearing in the upper left hand region of the
corresponding graph. Thus there is a tradeofl between
the storage capacity and the recall ability of the
network, with increasing synaptic noise decreasing the
former as it improves the latter.

Synaptic noise is known to be beneficial for recall in
other types of memory storage networks. For example,
in Hopfield networks the addition of a certain amount
of noise destabilizes the ‘spurious’ states (which are
certain mixtures of the stored memories) and thus
improves recall of pure memories (Amit 1989). How-
ever, it is not clear that these effects should also hold in
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Figurc 9. Different methods for setting the threshold on the
excitatory neurons. x is the number of active inputs to an
excitatory neuron coming from other excitatory neurons; r is
the number of these inputs that connect to synapses that
have been strengthened in the learning process (thus r<x).
Each point * therefore represents a possible input state of a
neuron. In the present theory and in that of Gardner-
Medwin (1976), the threshold 7 is fixed for all the neurons
at a particular time step. Thus the neurons with representa-
tive points above the line r=7 have inputs that exceed
threshold and so will be active at the next time step; those
with points below will be inactive. In Marr’s theory (Marr
1970), only those neurons whose active input exceeds both 7°
and fx are active at the next time step; that is, the ‘active’
region has been reduced to the double-hatched area.
Clearly, this gives more flexibility in setting the threshold.
For example, if a memory is almost recalled, then an f close
to 1 will be appropriate, since almost all active inputs will be
modified ones. However, as explained in the text, there
seems to be no biological justification for this more elaborate
mechanism.

the present type of network. One significant difference
is the asymmetry of the connections. The original
Hopfield network was completely symmetric; the
relaxation of this condition is equivalent to the
addition of noise (Hopfield 1982; Amit 1989) so in this
sense the current model is already ‘noisy’, even without
the stochastic release of transmitter at synapses.

Some insight into the role of noise can be obtained
by studying a case where retrieval occurs only for
oy > 0. Figure 8a,b shows a case of retrieval failure
when no noise is present. The input signal contains
1264 valid and 824 spurious firings; at the first step this
is reduced to 7 valid and O spurious firings, and this is
insufficient to keep the network active. Figure 8c—f
shows the same situation, only now with oy = 1.0. The
effect of noise is to increase the variance of the
membrane potential (sec equations (47) and (52)) and
hence spread out the distributions. This causes them
to overlap more, which is undesirable, but it also
pushes more neurons over threshold. In the present
case this leads to 32 valid firings at the first step, and
this is enough to keep the progressive recall process
going; by the 8th step the network has settled into a
pattern of 301 valid and six spurious firings.

It has already been remarked that there must be
some reduction in the number of memories stored if

Phil. Trans. R. Soc. Lond. B (1994)
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noise is to have a beneficial effect on the recall process.
Related to this is the relative capacity of the network,
as discussed in § 54 for the noiseless case. The same
testing procedure leads to the broken curves in figure
7: as expected, there is a reduction that is not too
drastic for oy = 0.4 but is severe when gy = 1.0.

7. DISCUSSION

The present study has much in common with the work
of Marr (1970) and Gardner-Medwin (1976). Marr’s
third layer, Pj, is a recurrent network which also
models memory storage in the CA3 region of the
hippocampus (see also Willshaw & Buckingham
1990). The progressive recall theory of Gardner-
Medwin is concerned with the synchronous updating
of a feed-back network, and was the starting-point for
our present theory. However, in spite of these similari-
ties, there are a number of important differences
which we wish to highlight.

(a) The role of inhibition

All the above theories agree on the importance of
inhibition as a mechanism for regulating the activity
in the network by setting appropriate thresholds on
the excitatory neurons. We suggest a quite specific and
biologically plausible mechanism for this threshold
setting, based on a system of inhibitory neurons which
samples the activity of the network and produces an
inhibitory effect dependent on this activity. (The
mathematical theory is given in § 3a4,b; the biological
justification is discussed in § 4a.)

Gardner-Medwin (1976) simply chooses a threshold
T using the criterion that the average number of
spurious firings should be kept below a certain level.
No biological mechanism is suggested and it is difficult
to conceive of one, as this would require a neuron to
recognize that it should not be active for the particu-
lar pattern being recalled. Such a mechanism is also
unsatisfactory for the purposes of a theoretical analy-
sis, as there is no explicit formula for 7" in terms of the
network parameters.

Marr (1970) has a more complicated mechanism in
which the threshold R on an excitatory neuron is
given by

R = max(T, fx), (30)

where x is the number of active afferent synapses on the
neuron (whether modified or not), and T7,f are
parameters termed the subtraction threshold and
division threshold, respectively. One problem with this
formula is that x is not a quantity which can be
measured by the neuron. It is not a measure of the
average activity of the network: this is proportional to
the expected value of x. The only conceivable way in
which x itself could be measured would be for an
inhibitory neuron to be associated with each excitatory
neuron and to have exactly the same inputs, but of
course this does not occur. Another problem is that no
biologically plausible mechanism is given for choosing
values for 7 and /. Marr states that the recovery of a
memory ‘depends on suitable juggling of 7" and f>
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(Marr 1970, p. 44); Willshaw & Buckingham (1990)
give several schemes for choosing 7 and f, but none has
a biological basis.

In view of the influential nature of Marr’s theories
it is worthwhile investigating his threshold-setting
mechanism a little further. In figure 9 the axes are the
number of active inputs to an excitatory neuron from
other excitatory neurons (x) and the number of such
active inputs that connect to the neuron via a synapse
that has been modified (that is, strengthened) in the
learning process (r). In our notation, for the ith
neuron,

=y WiX(0, 1= WyJ;X). (31)
J=1 J=1

Thus, necessarily, » < x and in figure 9 the points *
correspond to the possible input states of a neuron. If
a fixed threshold 7" is chosen for each time step, then
all neurons whose representative points lie in the
single- and double-hatched regions above the line
r= T are active at the next step; this region can be
termed the active region. Conversely, all neurons
whose points lie in the inactive region below r = T do
not fire at the next time step. This case of fixed T
corresponds to the theory of Gardner-Medwin (1976)
(although an explicit formula is not given for T)
and to the present theory (where 7 = n[gy + g (ax, +
(1 —a)y)]; see (19) and (20)).

In Marr’s theory, the threshold varies with each
neuron depending on the number of active afferent
synapses it possesses, as given by equations (3.7) and
(3.8) of Marr (1970). The active region is bounded by
r=x, r="T and r = fx, where T and f are chosen
arbitrarily, and is shown as the double-hatched region
in figure 9. There is now greater flexibility in choosing
the active region and this can be advantageous in the
recall process. Consider recall from a partial-memory
input. In the initial stages many valid neurons will
only have a few of their modified inputs active, so it
will be appropriate to take f <€ 1 and adjust 7" so as to
increase the valid firings and decrease the spurious
ones. Later, when the memory is almost recalled, a
choice of f close to 1 will be appropriate, as almost all
active inputs to a neuron will be to modified synapses
(r=~x). The subtractive threshold 7 is then only
needed to prevent neurons with a very small number
of active inputs from firing.

More precisely, using Marr’s notation, the conditio-
nal expectation of r given x is x(Cy + C,I13)/(Cy + Cy)
for valid neurons and xII3 for spurious ones, where C,
and C; are the number of valid and spurious firings,
respectively, and [Ty is the probability that a synapse
has been modified. (The relation to our notation is
Co = nax,, C, =n(l —a)y,, I3 =p.) So if C; is very
small, taking f close to 1 will cause most neurons
which should be active to fire and, if p is small and x is
not too small, the number of spurious firings will be
very small. When x is small it is not possible to keep
the number of spurious firings small enough so it is
necessary to use the subtractive threshold 7" to avoid
this.

Thus it is clear that, by choosing f and T in some
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optimal way at each step, Marr’s method will allow
for a greater number of stored patterns to be recalled
than will a method such as ours, where the threshold is
fixed for all neurons at each step. However, the lack of
a plausible biological mechanism to account for the
dependence on x, and for the choices made for f and
T, 1s a drawback to Marr’s method.

(b) Other differences

Other neural network theories either assume com-
plete connectivity (for example, Hopfield 1982; Amari
1989) or incorporate sparseness by assuming a uni-
form probability that two randomly chosen neurons
are connected (Marr 1970; Gardner-Medwin 1976;
Derrida et al. 1987; Canning & Gardner 1988). The
present theory incorporates some of the structure of
the CA3 region by using a limited spatial spread for
the axonal and dendritic trees and also assuming a
falloff in connection probability within the overlap
area. The effect of this is to reduce the variance of the
connectivity parameter ¢ and hence to reduce the
variances of the inputs to the valid and spurious
neurons. This in turn means a higher correlation
between the final state of the system and the memory
being recalled and also some increase in memory
capacity. For example, using the same parameters as
for figure 2 but with ¢® = (¢)% = 0.0025 (that is, the
homogeneous case) the final overlap is reduced to
0.955 (306 valid, five spurious) compared to 0.984
(322 valid, two spurious) for the non-homogeneous
case. Also, the maximum number of stable memories
is now about 310000, compared to 340000 for the
non-homogeneous case (figure 7a).

The full (Level 2) equations take account of the
correlations between the elements J; of the random
Hebbian and the state of the system at various time
steps; the earlier theories of Marr (1970) and
Gardner-Medwin (1976) do not do this. These effects
can be large for certain choices of the parameters
(Gibson & Robinson 1992); in the extremely sparse
networks considered here they are usually small,
except in certain restricted parameter regions. The
main effect of neglecting these correlations is to falsely
increase the range of parameter values for which the
network will retrieve memories.

Finally, the present theory allows for the probabilis-
tic secretion of quanta at the synapses to the excitatory
neurons. This effect is certainly present in the biologi-
cal neurons of the CA3 region, and it is of great
interest to investigate the effects that it has on model
networks. An expected result is that it will degrade the
capacity of the network, and this indeed is the case
(figure 7a). An unexpected result is that in certain
cases it can actually improve the recall of a memory
(figures 5, 6 and 8), although this effect is too small to
account for the presence of large amounts of synaptic
noise.

8. CONCLUSION

A theory for the dynamics of a sparse associative
memory (Gibson & Robinson 1992) has been applied
to the CA3 recurrent collateral system. The theory is
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biologically realistic in that it allows for sparse coding
(storage of memories in which few neurons are active)
and for the correct level of connectivity between the
excitatory neurons. The non-homogeneous nature of
this connectivity has also been taken into account by
incorporating the elliptical spread of the pyramidal
cells” axonal system and the experimentally observed
decrease of connection probability with distance. No
symmetry is imposed on the connections, and inhibi-
tory and excitatory neurons are distinguished. The
stochastic aspect of quantal release of transmitter at
synapses is incorporated into the formalism. Less
satisfactory aspects are the use of synchronous updat-
ing and the implementation of learning in the form of
a two-valued Hebbian rule, but these assumptions are
at present necessary to obtain analytic formulas for
the progressive recall process.

The pyramidal cells are taken to be threshold
elements which fire an action potential whenever their
membrane potential exceeds a fixed amount. The
membrane potential is set by the summed inputs to
the cell, and this contains contributions both from
other pyramidal cells and from the inhibitory inter-
neurons. A specific model has been proposed for these
inhibitory neurons: under assumptions concerning
their spiking frequency and the speed with which they
process their inputs, it is reasonable to take them to be
linear devices whose input is added to the input to the
excitatory neurons at the same time step. It follows
that they provide an inhibitory input to each pyrami-
dal cell that is proportional to the total firing activity
in all the pyramidal cells. With an appropriate choice
for the proportionality constant, this input serves to
stabilize the system (in the sense of avoiding the
extremes of the neurons all firing or all silent, or
oscillations between these cases) and allows the pro-
gressive recall process to proceed smoothly. This
treatment of the inhibitory neurons can be compared
with earlier ones, which either do not propose a
detailed model or else give a scheme which may be
more efficient for memory retrieval, but is biologically
untenable.

The equations describing the progressive recall
process are a modification of those given in Gibson &
Robinson (1992), the modifications being the inclu-
sion of many (as opposed to one) inhibitory neurons,
the non-homogeneity of the connections between the
excitatory neurons and the inclusion of synaptic noise.
It is to be emphasized that these equations describe
the dynamics of the recall process, and do not just give
the final states (or fixed points) of the system; that is,
the number of valid and spurious firings is given for
cach time step. The theory takes into account both
spatial correlations between the connection strengths
and the temporal correlations which develop between
the states of the system and the connection strengths;
in general, however, these are small for very sparse
systems of the type treated here. The full theory
consists of a set of four coupled nonlinear difference
equations. These are mathematically complex and
their bifurcation and stability structure is a subject of
current investigation. However, their use in an actual
calculation is completely straightforward and follow-
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ing the system for hundreds of time steps requires only
seconds of computer time; thus it is easy to investigate
the behaviour of the system for wide ranges of
parameter values.

The functioning of the CA3 region as an associative
memory has been investigated using a specific theory
of memory recall, and with a choice of parameters
based as far as possible on the known physiology of
this region. The conclusion is that the recurrent
collateral pyramidal cell system is indeed capable of
such a function, with a large storage capacity and
good retrieval from partial memory input, even when
this input contains a large number of spurious firings.
The average connectivity of ¢ is about as low as one
would like to go; smaller values of ¢ give a rapidly
diminishing capacity. (Larger values of ¢ do increase
the capacity, and in fact generally enhance the
performance of the network, but these appear to be
ruled out by the physiology of the CA3 region.) The
limited range of connections, leading to c—f = 0.021
(compared to the homogeneous value of ¢? = 7% =
0.0025) gives a significant improvement in both
capacity and final state overlap. The assumed firing
rate of @ = 0.001 (leading to 330 neurons firing when
a memory is recalled) seems a reasonable compromise:
a larger value would give better recall, but would
diminish the capacity; a smaller value would lead to
poor recall.

Inclusion of the noise introduced by stochastic
secretion of transmitter at the recurrent collateral
synapses leads to improved retrieval, although one
must pay a price in terms of reduced storage capacity
and slightly reduced quality of recall. Previous analy-
sis of the role of quantal secretion in the performance
of biological networks has shown that the stochastic
properties of this process extend the ability of granule
cell networks to perform pattern separation and
activity regulation (Gibson ef al. 1991). The probabi-
listic secretion of quanta therefore has important
implications for the functioning of neuronal computa-
tional systems (Burnod & Korn 1989).

We thank the referees for stressing the importance of
comparison with carlier work and also for suggesting the use
of an elliptical axonal spread for the pyramidal cells in CA3.
Support under ARC Grant AC9031997 is acknowledged.

APPENDIX 1. PROGRESSIVE RECALL
EQUATIONS

The total input to the ith neuron at time ¢ is n#; ({),
where 4,(¢) is given by equation (5). First, consider the
input to the / neurons, and for the present assume that
there is no inhibition of 7 neurons by [ neurons (i.e.
Jy=0); then the input to the ¢th 7 neuron can be
written
12
hi(t) = - Y Widw X(t), i=n+1,..,N (32

Jj=1

Taking the expected value of each side gives

1 2
(g’/li(l):;;ZCme(g))(}(t), t=n+1,...,N, (3%

J=1

and the use of equation (7) gives equation (11).


http://rstb.royalsocietypublishing.org/

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

Dynamics of the CA3 hippocampal network M. R. Bennett and others 185

Suppose now that J;; # 0. Substituting equation (5)
in (7) and regrouping terms leads to

> 450 =53 W,

J=n+1

3!3

z—n+1 5 N, (34)

where 4; = 6; + (1cJy/n) W;. The inverse of the matrix
has elements that can be written §; + By/n where
B;= O(1) as n— oo . Substituting this into equation
(34) and taking the expectation gives an expression of
exactly the same form as (11), except that gi' = K¢z J
is replaced by gf = ke S (1l + n*f/n) where f =
&B;. The variances remain the same as before, since
the additional term involving B; gives a negligible
contribution for large 7.

For the E neurons, it remains to include the
correlations discussed in § 3¢. The systematic approach
is to do the calculation of the expectation of X (¢) in
two steps, first conditioning on the previous state of
the system. This leads to (14) being replaced by

EX(t+ 1) = DE,)]o;(t), i=1,...,n, (35)
where

E(t) = Ehi(t) — go = S8 (h:(1) — 2| X (1))], (36)
[0,(6)]? = &[var(h(£)| X (1)) (37)

It remains to find expressions for £;(¢) and o;(¢) which
can be used in an actual calculation. Consider first the
case of valid firings, for which i =1, ., na. The
typical input term A;(t) can be written as the sum of
two terms, the first coming from the £ neurons and
the second from the [ neurons:

n

1
() =_Z le‘]lj J(t)

_]71

Z le (

j n+1

Jen) (1) (38)

The calculation of the expectation of the first term
parallels a calculation in Gibson & Robinson (1992;
§6). The second term is similar to (32), and taking the
expectation gives a term similar to equation (11).
Putting these together gives

Em(l) = e(ax, + (1 — a)py) — gilax + (1 — a)y), (39)

where x, y, are defined by equation (10), y; denotes an
expectation conditioned on J;=1, and p, g are
defined in § 3d. A similar expression can be found for
&h,(t), where the n stands for a typical index in the
range na + 1, . . ., n.

The calculation of the variance of #;(¢) starts from
equation (38) with X;(¢) in the second term replaced
by equations (7) and (32). It is then straightforward

to show that

n?var(hy (£)| X (¢))

=var<ZleJlj C(4)] X (1) >+0(1/n). (40)

Jj=1

For n large the O (1/n) term can be neglected and the
remaining term has already been evaluated in Gibson
& Robinson (1992).
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The progressive recall process is given by the four
coupled difference equations (15) to (18), involving
expectations and variances of #(¢). The expectations
are given by equations (19) and (20), and these also give
Ei(t) and E,(t) if p is replaced by p’ where p’ =
(1 =2(1 —a®™ 4 (1 — 2a® 4+ ¢®>)™)/p. The standard
deviations are given by

[n0,(0)]? = na(e — P)x,

[n0,(t)]* = napx, (c‘ — % —) + n(l — a)py,

x (E — % Zl> + n¥yp(ax, + (1 — a)y)%?,  (42)
l

where 7 = (1 — 242 + a®™ — (1 — a®? and
Y

J— - 1"
=2 :;2 2 =1, (43)

j=

Equations (41) and (42) also give ¢i(¢) and o(¢) if
everywhere p is replaced by p’ and y by 9" where
Y =[1-3(1 —a®"+ 3(1 — 22+ a®" — (1 — 3a® +

3a® — a*)"]/p — p’®. The above set of equations imple-
ments the Level 2 approximation in Gibson & Robin-
son (1992), in which both spatial and temporal
correlations are taken into account.

It remains to show how the formalism is modified to
incorporate the effects of synaptic noise. The noise
arises because repeated arrivals of a signal at the same
synapse can have different effects. This is a temporal
phenomenon, so one starts by considering a system
with all the connections C; fixed and calculating the
conditional expectation and variance of 4"(¢) as given
by equation (24):

S ()| X(1), ©) = pyhi(0), (44)
var(h"(0)| X (1), € = (1jn) %h(1), (45)

where uy, 6% are the mean and variance of N,. From
these it follows that

(O|X(0) = pyéh(0|X (1) (46)

var(h, lX = (1/n)6% & (k; ‘X

+ i var(h(6)]| X(0).  (47)
All the quantities on the right hand sides have already
been calculated. In summary, probabilistic secretion

of quanta can be included by replacing equations (15)
and (16) by

%1 =@ (E(1)]o7(t)), (48)
Y1 = P (ET(1)]07(1)), (49)
where
Ef(t) = t(ax, + (1 — a)py))pn

— &lax, + (1 — a)y,) — &, (50)
E}(t) = tp(ax, + (1 — a)y))py

— glax, + (1 — a)y) — g, (51)
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[no%(1))? = no¥e(ax, + (1 — a)py) + pilno1(1)]?,  (52)
[nay()]” = noap(ax, + (1 — @)y) + pilno, (0% (53)

and the corresponding expression for x;, ; and y;, ; are
obtained from these by making the usual replacement

pop, Y.

APPENDIX 2. FORMULAS FOR AVERAGE
CONNECTIVITIES

From equations (21) and (25),
1 n

F=C=Y exp(—Ar, — 7). (54)
ni

If edge effects are neglected, then r; can be set equal to
zero in this formula. Approximating the sum by an
integral gives

f=CZfe v d4, (55)
n

where ¢ is the density of the E neurons, taken to be
constant, and d4 is the element of area; the integral is
over the effective axonal area.

If the axonal area is taken to be circular, then
A = constant, d4 = 2=r dr and the integral is from 0
to R, where R is the extent of the axonal tree. If the
area is elliptical with eccentricity ¢, then as 4 = nx?
J(1 = ¢?) is the area of an ellipse with semimajor axis
x, dA = 271:\/(1 — ¢%)x dx and equation (55) gives

t=C

SHINY

Ry
271\/(1 —€?) j e M xdux, (56)
0

where R; is the length of the semimajor axis and A; is
the value of A in the direction of the major axis. Thus
the main difference with the circular case is the
presence of the multiplicative factor \/(1 —¢%) =
Ry/R;, where R, is the length of the semiminor axis.
The assumption made in employing this procedure is
that the connection probability on the ellipse with
semimajor axis ¥ depends only on x and this means
that X must be anisotropic (in fact, A= Ajx/r). Per-
forming the integral in equation (56) gives equation
(26). A similar calculation gives the mean squared
connectivity as

— o Ry

& =C*=2m /(1 — &% je‘z’\l"xdx, (57)
n 0

and performing the integral gives equation (27).
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